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Abstract. In this work, a new approach is developed for analysis and-_Z_slgn of tran-

sonic airfoils. A set of full-potential-equivalent equations in yon Mises coordinates
is formulated from the Euler equations under the irrotationality and isentropic as-
sumptions. This set is composed of a main equation for the main variable y, and

a secondary equation for the secondary variable R. The main equation is solved by

type-dependent differencing combined with a shock point operator. The secondary
equation is solved by marching from a non-characteristic boundary. Sample compu-

tations on NACA 0012 and biconvex airfoils show that, for the analysis problem, the

present approach achieves good agreement with experimental Cp distributions. For
the design problem, the approach leads to a simple numerical algorithm in which the

airfoil contour is calculated as a part of the flow field solution.
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1. Introduction

Transonic flow is a widely encountered phenomenon in aeronautics and astronau-

tics but is not easy to calculate becausc the flow field, and the govcrning equations

as well, axe mixed type. Therefore, transonic computation had little progress until

1971 when Murman and Cole developed a type-dependent difference scheme and

successfully solved the transonic small disturbance (TSD) equation[l]. Sincc then,

transonic computation has become one of the most upsurging topics for computa-

tional fluid dynamieists[2-8]. In 1974, Jameson extended transonic flow computa-

tion to the full potential (FP) stage by constructing a rotated difference scheme[4].

Afterwards, papers were published on transonic computation by solving Euler equa-

tions[5,6] and their equivalent streamfunction-vorticity formulation[7,8]. Neverthe-

less, in spite of the recent active efforts on Euler solvers, the full potential calculation

is still attractive due to its simplicity, efficiency and sufficient accuracy.

The yon Mises transformation is a type of streamUne-based transformation which

generates a streamwise coordinate system. The yon Mises formulation has a number

of advantages when applied in CFD. For example, one can resolve the problem of

body-fitting coordinates without performing any grid generation. This is because

the governing equation (flow physics) and grid generation equation (flow geometry)

are combined together in this formulation. Furthermore, the boundary condition on

the airfoil for the analysis problem is Dirichlet, and a non-iterative design technique
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r can be developed for the inverse problem, leading to simplified numerical algorithms

and a saving of computer time. Therefore, since Barron[9] connected the yon Mises

transformation with Martin's approach[10] and solved incompressible 2-D symmet-
ric flow, numerical simulations based on the yon Mises transformation have been

considerably extended, such as to incompressible llfting[ll], axisymmetric[12] and

design[13] problems, and to transonic flow[14,15]. In addition, Greywall[16] and

Dulikravich[17] obtained a sinfilar formulation for incompressible and compressible
flows, respectively.

However, when extending Barron's approach[9] to transonic flow, several prob-

lems appear. For compressible flow, apart from the yon Mises variable y, another

variable, the density p, must be updated in each iteration. But in the transonic

range, the classical difficulty of double value density-massflux relation still exists.

Besides, shock waves are not easy to handle in yon Mises coordinates either by

the artificial density technique or by type-dependent differencing. Recently, the

authors[18] developed a new approach to overcome these difficulties by solving so-

called full-potential-equivalent equations in yon Mises coordinates. The principal

advances over the previous transonic work[14,15] are as follows: 1) To update den-

sity, instead of solving the non-linear algebraic Bernoulli equation, a first order

partial differential equation is solved, thereby avoiding the double density problem;

2) To handle shock waves properly, a shock point operator in yon Mises coordinates

is proposed and combined with the type-dependent difference scheme so that shock

waves can be captured correctly; 3) Introducing a concept of generalized density

linearizes the density equation.

In the next section, an outline of the mathematical formulation is given. The

numerical algorithms for analysis and design problems are constructed in sections 3

and 4. In section 5, sample computations are performed to test the approach, and

conclusions are given in section 6.

2. Flow Equations in Streamwise Coordinates

Two dimensional, steady, inviscid fluid flows are governed by the Euler equations

]

pu2pu+ p + puv = 0

| puv pv 2 + p

\ puH z pvH

(2-1)

where p is density, u and v are velocity components in Cartesian coordinates, p is

pressure, H = _--___p/p + (u 2 + v2)/2 is total enthalpy and 7 is the ratio of specific

heats, p, u, v and p are normalized by free stream density Poo, speed qoo and dynamic

pressure head Pooq_ while z and y are scaled by the airfoil chord length.

Introducing stream:function ¢, such that Cv = pu,¢z = -pv and substituting
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(-¢,¢,1p)+ I¢_lp+p =o.

into equation (2- 1), one gets

¢_/p+p
-¢,¢,,/p

%H
(2-2)

r

Streamfunction ¢ = ¢(z,y) can be rewritten in an implicit form, F(z,y,¢) = 0,

or in an explicit form, y = y(z,_/,). This process is equivalent to introducing yon

Mises transformation: z _= ¢,y = y(¢,¢). If the Jacobian J = O(z,y)/O(¢,¢) :/

0, oc, then the transformation is single-valued and (2 - 2) becomes

= 0 (2-3)

2_.,2p2 2,_where the total enthalpy H = _-_-lP/P + (1 + Y¢)/t y,_ ). The streamline ordinate
y, called yon Mises variable, is viewed as a function of ¢ and ¢. The velocity

components can be casily calculated from u = 1/(py,_),v = y¢/(py¢), aftcr y and p
are solved.

It is known that thc entropy increase across a shock wave is of third order of

thc shock strcngth. So, if the shock is not strong, transoific flow can be assumed

isentropic and irrotafional. Rcplacing the encrgy cquation in (2-3) by the isentropic

relation and keeping in mind that ¢ - z, we reduce (2 - 3) to

1
(-- + py,), - (py,)¢ = 0, (2-4a)

PY_

Yz

(_7), + p,_= o, (2-4b)

p't

P- 7M£' (2-4c)

(_),_(i+ V.) opy,/, '/'=
(2-4d)

where Moo is free stream Mach number and the last equation is the irrotationality

condition, w = O, expressed in yon Mises coordinates. Substituting (2 - 4c) into

(2 - 4a) and (2 - 4b) and expanding (2 - 4d), we get

2 p-t+1

-_,_ + _,,_(y,_ ___ p-r+_ p_0 _ O, (2-5a)-- - 1) - Y'Y_ M£ p

p't+1 p,p = O,Y'_Y"- Y_Y'*- Y'Y'_ + Y_'M£ p (2-5b)

]
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F y,_y,, - 2y,y,,,y,w + (1 + Y_)Yv..w - Y,Y + yv(1 + Y_)P'_'
P P

Properly manipldating the above three equations can produce several sets of equa-

tions. Each set has two independent equations for two variables. To make the

formulation more compact, define generMized density R = p-r+1 as an alternative

to density p. Solving for pz/p and p,;,/p from (2 - 5a)and (2 - 5b), and substituting

into (2 - 5e), one gets

(y_, M£ )y,, _ 2y,v,.y,,_+ (1+ y=)y,_,,_,= o.
R

(2-6a)

Eliminating y.,/, from (2 - 5a) and (2 - 5b) gives

= = 1) =y_y,_,R, - y_(1 + y,:)R_, = (7 + M_:y_z. (2-6b)

Equation (2 - 5a) can be rewritten as

- _ - y_yeaRq, = (7 + 1)mooY_. (2-6c)
R _

Substituting the above yz,,yz,;, into (2 - 5c) and replacing p by R, one obtains

yz(y_ - __
M£
R )R, + U¢(1- U,=

M£1 +y=_
n y_, )n¢="_+l)M_l+'=

2

2y_ Yv, v:. (2-6d)
Yt0

It is important to note that (2 - 6b) is linear after introducing the new variable R.

The term M_/R is usually called compressibility factor.

In principle, any two of the above four equations could be combined as a set of

equations to solve for y and R. But, in practice, equation (2 - 6a) is always selected

to solve for y and one of the remaining three equations is selected to solve for R.

Equation (2- 6a) is a second order, non-linear, partial differential equation of mixed

type depending on the local flow property. If the flow is subsonic/supersonic, then

(2- 6a) is elliptic/hyperbolic. In other words, the mathematical classification of the

equation is consistent with the physical nature of the local flow. Therefore, (2 - 6a)

is named the main equation for the corresponding main variable y. Equations (2 -

6b) - (2 - 6d) are called secondary equations for the secondary variable R. Among

the three secondary equations, (2 - 6b) appears simpler because it is linear and

hence priority is given to it to accompany the main equation. The main equation

(2 - 6a) and one of the secondary equations (2 - 6b) - (2 - 6d) constitute a set

of so-called fuR-potential-equivalent equations. They are coupled with each other

and solved in an alternating and iterative manner. More details and other forms of

full-potential-equivalent equations can be found in [18].
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F
3. Analysis Problem

For a symmetric airfoil placed in a transonic stream at zero angle of attack, the

governing equations (2 - 6a) and (2 - 6b) can be rewritten as

Alyzz + A2yzw + A3yw¢ = O, (3-1)

B1Rz + B2R¢ = B3 (3-2)

whcre A1 = y_- M_/R, A2 = -2yzy,_,Aa = 1 + y_,Ba = yzy_,B2 = -y_:,(1 +

y_),B3 = ('7 + 1)M_y_. The boundary conditions on y axe Dirichlet: y = f(z)

on the airfoil, y = ¢ at infinity, y = 0 on the symmetry line and R = 1 at infinity,

where f(z) is the airfoil shape function. The computational domain and boundary

conditions are shown in Fig.1.

Since the mathematical character of (3 - 1) depends on the local flow property,

it is necessary to apply Murman and Cole's typc-dependent schemc[1] to solve for

y. Applying the type-dependent difference scheme to (3 - 1) gives

Ayij-x + Byij + Cyij+a = RHS (3-3)

wherc A = f12A3 I_-e-flA2,B = -2f12A3 + (1 - 3v)A_, C = fl:A3 + L_-e-flA2,

RHS = - vA_(yi+_,.i + yi-_,j) + (1 - v)A_(2yi__,j - yi-:,j)

- vflA2(yi+l,j+l -- Yi+a,.i-1 -- Yi-l,j+a + Yi-l,j-1)/4

+ (1 -- v)flA2(yi-l,j+l - yi-l,j-1)/2,

and fl = Az/A¢, for i = 2, 3, ..., Im_z - 1,j = 2, 3, ..., Jm_, - 1. The switch

parametcr v = 1 for a subsonic point, v = 0 for a supersonic point. The resulting

system of differcnce equations (3 - 3) has a tridiagonal eocfficient matrix so that

SLOR can be applied by relaxing along vertical lines, sweeping from left to right

and iterating up to convergence. (see Fig.l)

After y(z, ¢) is solved from the main equation (3 - 1) and yz, y,/,, yzz axe properly

differenced, the secondary equation (3- 2) can be solved for R(z,¢) by marching

from an initial line other than its characteristic curve. The slope of its characteristic

curve is d¢/dx = -(1 + Y_)/(YzY,I,). At infinity, d¢/dz = co. Thus, left and right
far field boundaries are characteristic curves and hence cannot serve as initial lines.

Fortunately, the horizontal boundary is not a characteristic and we can march

equation (3 - 2) from the top boundary to the airfoil using the condition R = 1 at

infinity.

The Crank-Nicolson scheme for (3 - 2) gives

ARi-I,j + BRi,.i + ORi+aj = RH'-'-'S (3-4)
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F where RH-'-"S = CRi-I,j+I + .BR,.j÷I -4-.AR,+,,j÷I + 4AxB3,-A = -B,,B = -4fiB2,

= Ba,fl = Ax/A¢ for j = Jm._ - 1,...,3,2,1,i = 2, 3, ..., Imaz - 1. Tile system

of difference equations (3 - 4) can be solved row by row from the horizontM far field

to the airfoil using SLOR, but no iteration is needed because (3 - 2) is linear. After

R is solved, the pressure coefficient is calculated from

2 ._2_

Cp = 7_(R_+,-1).
(3-5)

However, it has been found after numerical tests that this procedure is efficient

only for flow in which the shock is weak. For flow with a stronger shock, the itera-

tions fail to converge. To overcome this dimculty, a special treatment of the shock

wave is proposed following the ideas of Murman's shock structure analysis[2,3]. For

usual transonic flows, the shock wave is approximately normal and the shock jump

conditions are given by

= 0, = 0. (3-6)

where [...] represents a jump across the shock. Based on this analysis, the difference

quotient approximations to y_,, Yz_ at a shock point, i.e. grid point just behind the

shock, are constructed as below:

1

(Yzz)i,j -= Ax-----_(Yi+l,j - Yl,.i - otjyi-l,j + otjYi-2,j) (3-7a)

1

(yz,_ )i,j - 4AxA¢ (Yi+a,./+a - Yi+l,j-1 at- Yi,j+l - Yi,j-1

- 3yl-a,j+l + 3Yi-l,j-1 + Yi-2,j+_ - Yi-:,j-a). (3-7b)

where aj is the density jump factor on jth streamline and given by the Rankine-

Hugoniot relation of a normal shock. (3 - 7a) and (3 - 7b) are called shock point

operator (SPO) in yon Mises coordinates. The differenceequations (3 - 3) for y

and (3 - 4) for R are modified using SPO. Numerical experimentation has shown

that SPO must be applied in the y,z,yz_ terms of the main equation (3 - 1) and

in the B3 term of the secondary equation (3 - 2). SPO is a crucial tool to capture

shock waves in supercritical transonic flows.

4. Design Problem

Similar to the analysis problem, the main equation (2 - 6a) and secondary equa-

tions (2 - 6b) or (2 - 6c) can be solved for y and R alternatively:

A_yr, + A2yz,_ + A3yce,_ = O, (4-1a)

L J



365

Third International Conference on Inverse Design Concepts and OpumLzarion in Enginecnng Sciences

(ICIDES-IID. Editor: G.S. Duliicravich. Washincton D.C.. October 2_3-25. 1991.

B1R_ + B2R_, = Ba, (4-1b)

D1Rz + D2R e, = D3 (4-1c)

2 _M_/R, A2 A3 1 + 2 2 (1 +where Aa = y_ = -2yzy,;,, = y_,B1 = yzyw,B2 = -y_.

y_),Ba (7+1 2 2 -y¢y_,Da (7+1= )M_y_,D1 Y¢'(Yv- M_/R) D2 2= , = = )Mocy_ v.

The boundary conditions are the same as in the anMysis problem, except on the

airfoil, which is unknown. There, the pressure coefficient Cp0 is specified, hence,

the gencrMized density is also specified:

R0 = (1 + 7M_Cp,/2) (_+1)/'_ (4-2)

On the airfoil surface, the Bernoulli equation in yon Mises coordinates leads to

F(z)y - = 1 (4-3)

where

F(z) - (7- 1)M_[(1 + ML)R; +' - R,].

This is a Ncumann boundary condition on the airfoil when solving (4 - la) for y.

(4 - 2) is a Dirichlet boundary condition on the airfiol when solving (4 - lc) for R.

In addition, on a symmetry line off thc airfoil, Re = 0.

If streamlines do not intesect each other on the airfoil, then y_ > 0, and if, fur-

thermore, F(z) -_ 0 on the airfoil, then equation (4 - 3) gives y¢ = V/(1 + y_)/F(z).

For most practical transonic flows the required conditions are easily satisfied as long

as Cp, is reasonably specified. Differencing y¢_, we get

Yi,1 = [4yi,= - Yi,3 - 2G(zi)]/3 (4-4)

where C(zi) = ACV/[1 + (y2_)i,al/F(zi). Considering this new boundary condition,

we modify system (3 - 3) as follows:

For j = 2, equation (3 - 3) reads Ayi,a + Byi,= + Cyi,3 = RHS. Substituting
(4 - 4) into it, we have

(B + 4A/3)yi,= + (C - A/3)yi,3 = RHS + 2AG(zi)/3 (4-5)

Replacing the first equation in system (3-3) by (4-5), solving the resulting system

and applying (4 - 4), we can obtain the desired airfoil contour/(z_) = y_._ without

further iteration of the airfoil shape. The computational domain and boundary

conditions are shown in Fig. 2.

To solve for the secondary variable R, two secondary equations (4 - lb) and

(4 - lc) are available. For equation (4- lb), the marching procedure is the same

as in the analysis problem, while for equation (4 - le), the marching procedure is
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different. The slope of its characteristic curve is d¢/dz = -(gzY_;,)/(Y_ - M_/R).

At infinity, d¢/dx = 0. So, the horizontal far field boundary is a characteristic

curve, but the vertical boundaries are not. Therefore, the marching process can be

carried out from left to right.

Crank-Nicolson scheme for (4 - lc) gives

ARi,j-1 +/)Ri,j + C'Ri,j+I = R[-1S (4-6)

where R['IS = CRi-l,j-1 + BRi-I,j + flRi-l,j+l + 4AxDa,/_. = -flD2,B = 4D1,

= flD2,fl = Az/A¢, for i = 2, 3, ..., Im,z - 1,j = 2, 3, ..., Jm,z - 1.

For the first equation in system (4- 6), the boundary conditions R;,1 = R,(zi)

on the airfoil and Ri.1 = Ri,2 on symmetry line should be imposed. It is noted that

y:e in D3 should be type-dependent differenced with SPO to keep consistency with

the main equation.

Both (4 - lb) and (4- lc) have been coupled with (4- la). Numerical experiments

have shown that (4 - le) gives better accuracy than (4 - lb). This is reasonable

because the boundary condition on the airfoil is considered not only in the main

equation (4 - la), but also in the secondary equation (4 - lc), Mille it is not suitably

considered in the secondary equation (4 - lb). However, the price to pay is more

iterations because (4 - lc) is non-linear.

5. Sample Computations

The approach developed here is applied to calculated transonic flows for both

analysis and design problems. Only symmetric airfoils at zero angle of attack are

considered, but both subcritical and supercritical Math numbers are included. In

the computational domain, a 65x33 uniform mesh covers -2 < z < 3, 0 < ¢ < 2.5

and the airfoil is placed between 0 and 1. For higher Mach numbers, a 80x31 mesh

has been used. The computational domain and boundary conditions are shown in

Figures 1 and 2.

Figures 3 and 4 are comparisons of calculated Cp distributions of NACA 0012 with

experimental data at NAE[19] for Moo = 0.490 and at ONERA[19] for Moo = 0.803.

Figure 5 indicates the calculated C v distribution of a 6 percent biconvex airfoil at

Moo = 0.909 compared with experimental data at NASAl20]. Prom these plots we

can see that the present approach is able to accurately predict C v distributions on

airfoils in transonic flows. The agreement between computed pressure and available

experimental data is quite satisfactory. For supercritical transonic flows, the shock

wave can be captured by the presently proposed type-dependent scheme with SPO.

Figure 6 shows the designed contour of a 6 percent biconvex airfoil compared

with the exact shape[21]. The specified Cv distribution on the airfoil comes from

experiments at NASA[20] for Moo = 0.909. Figures 7 and 8 give designed NACA

0012 contours compared with the exact shape[21]. The specified Cp is from NAE[19]

for Moo = 0.490 and ONERA[19] for Moo = 0.803. Here, we can see that the present

approach is capable of designing airfoil contours with satisfactory accuracy.
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6. Conclusions

1) The newly developed approach based on the full-potential-equivalent equations

in yon Mises coordinates is able to solve transonic flows for both analysis aJ_d design
problems.

2) The full-potential-equivalent equations are composed of a main equation for

the corresponding main variable, streamline ordinate Y, and a secondary equation

for the related secondary variable, generalized density R.

3) The type-dependent difference scheme with shock point operator is effective

to solve tile main equation for Y and the shock point operator is crucial to capture

shock waves in supercritical transonic flows.

4) The secondary equation can be solved for 12 by marching from a certain non-

characteristic, density-specified boundary. Crank-Nicolson scheme proves to be use-

rid to march such a equation.

5) For analysis problems, the boundary condition on the airfoil is Dirichlet, which

is easy to implement.

6) For design problems, the airfoil contour can be obtained in a non-iterative

manner because it is a part of the solution of the main equation.
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